COS 423                 Notes on Shortest Paths: Lecture of Monday 3/5

Spring, 2007

1. The Labeling and Scanning Algorithm

The labeling and scanning algorithm for the single source shortest path problem maintains a tentative distance 
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and a tentative parent 
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 for each vertex 
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 In addition, each vertex is (implicitly) in one of three states: unlabeled, labeled, and scanned.  Initially 
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 where 
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 is the source vertex, and 
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for every vertex.  We denote the set of labeled vertices by 
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 initially 
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 The unlabeled vertices are exactly those with infinite distance; the scanned vertices are those with finite distance not in 
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  The algorithm repeats the following step until 
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 is empty:

Scan Step: Delete some vertex 
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 from 
[image: image14.wmf]L.

  For each edge 
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replace 
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by 
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and add w to 
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Each time a vertex is added to 
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 its tentative distance decreases. The algorithm maintains the invariant that if 
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is finite, there is a path from 
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 to 
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 of length 
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 (Prove this by induction.) It also maintains the invariant 
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  (Prove this by induction.)

We shall study the behavior of the algorithm by examining the structure of the graph defined by the parent pointers.  This graph spans the vertices with finite distance (those not unlabeled) and consists of at most one tree (rooted at 
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 and zero or more 
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  (A 
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 is a tree with one additional edge, and exactly one cycle, such that every vertex in the tree is reachable from any vertex on the cycle.  Such a graph is obtained from a tree by adding an edge from any vertex to the root; deleting any edge on the cycle of a 
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 produces a tree.) Initially the graph consists of a single tree 
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rooted at 
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 containing just 
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 As scan steps are executed, T grows and changes.  Suppose 
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 is a vertex added to L as a result of the examination of an edge 
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 If 
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was previously unlabeled, T grows by one vertex 
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  If 
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 was already in T, and 
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 was not a descendant of 
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 in T, then T is restructured: the subtree of T rooted at 
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 is disconnected from the previous parent of 
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 and reconnected to 
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  T remains a tree containing all the vertices with finite distance unless and until the third case occurs: 
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 was already in T, and 
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 was one of its descendants.  In this case, changing the parent of 
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 to 
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 creates a cycle.  This cycle must be negative, as the following argument shows: let 
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 be the length of the path in T from 
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 to 
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  Just before the update of 
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caused by the examination of 
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 we have 
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 we obtain the latter inequality by summing invariant 
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over the edges on the path in T from 
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 to 
[image: image59.wmf].

v

   Combining these inequalities gives 
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 the latter is the length of the cycle formed by making 
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 the parent of 
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Thus the algorithm maintains a tree rooted at 
[image: image63.wmf]s

 and spanning the vertices of finite distance until it creates a cycle, which is a negative cycle.  Once this happens, the set of parent pointers need not define a tree, but the argument above can be extended to show that any cycle defined by parent pointers must be negative.  (Show this.)

Lemma 1: If the labeling and scanning algorithm halts, then, for any vertex 
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 is the actual distance from 
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 to 
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 (infinite if 
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 is not reachable from 
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Proof: If 
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 is not reachable from 
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 then 
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 will remain infinite until the termination of the algorithm, since it cannot be set to a finite value without a path from 
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 to 
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 (of length the new value of 
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 being discovered.  Suppose 
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 is reachable from 
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 and let 
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 be a shortest path from 
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 to 
[image: image80.wmf].

v

  One can show by induction on the number of edges on 
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 that 
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 is the length of 
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 (Verify this.)

This if the algorithm stops, it computes correct distances.  If there is a negative cycle reachable from 
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 then any vertex on the cycle is not at finite distance from 
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s

 and the algorithm runs forever.  One can show that, if there are no negative cycles, the algorithm stops after making at most 
[image: image86.wmf]2
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 additions to L.  (Prove this.)

2. Efficient Scanning Orders

Depending on the properties of the graph and the edge lengths, different scan orders make the labeling and scanning algorithm efficient.

2.1 General Graphs and Lengths: Breadth-First Scanning

In the case of a general graph with possibly negative edge lengths, maintaining L as a queue gives good worst-case performance.  Vertices are removed from the front of L and added to the back of L.  There is some ambiguity in this rule.  If a vertex 
[image: image87.wmf]w

 that is currently on L has its distance changed, we can either leave it in its current position in L or move it to the back.  Since the former requires less updating than the latter, and since it simplifies the representation of L (explain this), the former seems preferable.  But the analysis to follow applies to both variants, and indeed holds for the most general case in which the decision whether to move 
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 or not is made arbitrarily each time the question arises.

We define passes over the queue as follows.  Pass zero consists of the initial scan of 
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  For 
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 pass 
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 is defined inductively to consist of the scans of vertices added to the back of L during pass 
[image: image92.wmf]1.
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 We can prove by induction on 
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 that, for any vertex 
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 if there is a shortest path from  
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 to 
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 of 
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 edges, then 
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 will be the actual distance from  
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 to 
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  after pass 
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 (Show this.)  Thus the algorithm terminates after at most 
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 passes, or else runs forever.  With an appropriate, simple implementation the time per pass is 
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  (Give such an implementation.)  Thus the algorithm runs in 
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time if there are no negative cycles, or even if there are negative cycles if we count passes and stop after pass 
[image: image105.wmf]2.
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If L remains non-empty after pass 
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 then the graph defined by the parent pointers contains a cycle (which must be negative) and retains this property henceforth; that is, it cannot revert to a tree.  To prove this, we define a value 
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 for each vertex 
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 by initializing 
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 for each vertex 
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 and setting 
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 each time 
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is updated and 
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 is added to the end of L.  With this definition, each time a vertex 
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 is removed from the front of L, 
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 is the number of the current pass.  (Why?)  Also, the algorithm maintains the invariant that 
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 (Why?)  If vertex 
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 is ever added to L a second time, it acquires a parent and henceforth the graph of parent pointers must always contain a cycle.  Otherwise, once pass 
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 is completed with L non-empty, there must always be a vertex 
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 with 
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 (since L must remain non-empty).  Following parent pointers backward from 
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 must eventually repeat a vertex and hence traverse a cycle.  The only other possibility is that s is reached first, but 
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 and each step back decreases 
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 by at most 1, so a vertex must repeat before s can be reached.

Thus if we include a count of passes and terminate after pass 
[image: image124.wmf]2,
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 we can extract a negative cycle merely by following parent pointers from any vertex still on L.     
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